Accessing SQLite Databases Using Python and Pandas
Last updated on 2023-05-08 | Edit this page
Overview
Questions
- What if my data are stored in an SQL database? Can I manage them with Python?
- How can I write data from Python to be used with SQL?
Objectives
- Use the sqlite3 module to interact with a SQL database.
- Access data stored in SQLite using Python.
- Describe the difference in interacting with data stored as a CSV file versus in SQLite.
- Describe the benefits of accessing data using a database compared to a CSV file.
Python and SQL
When you open a CSV in python, and assign it to a variable name, you are using your computers memory to save that variable. Accessing data from a database like SQL is not only more efficient, but also it allows you to subset and import only the parts of the data that you need.
In the following lesson, we’ll see some approaches that can be taken to do so.
The sqlite3
module
The sqlite3 module
provides a straightforward interface for interacting with SQLite
databases. A connection object is created using
sqlite3.connect()
; the connection must be closed at the end
of the session with the .close()
command. While the
connection is open, any interactions with the database require you to
make a cursor object with the .cursor()
command. The cursor
is then ready to perform all kinds of operations with
.execute()
.
PYTHON
import sqlite3
# Create a SQL connection to our SQLite database
con = sqlite3.connect("data/portal_mammals.sqlite")
cur = con.cursor()
# The result of a "cursor.execute" can be iterated over by row
for row in cur.execute('SELECT * FROM species;'):
print(row)
# Be sure to close the connection
con.close()
Queries
One of the most common ways to interact with a database is by querying: retrieving data based on some search parameters. Use a SELECT statement string. The query is returned as a single tuple or a tuple of tuples. Add a WHERE statement to filter your results based on some parameter.
PYTHON
import sqlite3
# Create a SQL connection to our SQLite database
con = sqlite3.connect("data/portal_mammals.sqlite")
cur = con.cursor()
# Return all results of query
cur.execute('SELECT plot_id FROM plots WHERE plot_type="Control"')
cur.fetchall()
# Return first result of query
cur.execute('SELECT species FROM species WHERE taxa="Bird"')
cur.fetchone()
# Be sure to close the connection
con.close()
Accessing data stored in SQLite using Python and Pandas
Using pandas, we can import results of a SQLite query into a dataframe. Note that you can use the same SQL commands / syntax that we used in the SQLite lesson. An example of using pandas together with sqlite is below:
Storing data: CSV vs SQLite
Storing your data in an SQLite database can provide substantial performance improvements when reading/writing compared to CSV. The difference in performance becomes more noticeable as the size of the dataset grows (see for example these benchmarks).
Challenge - SQL
Create a query that contains survey data collected between 1998 - 2001 for observations of sex “male” or “female” that includes observation’s genus and species and site type for the sample. How many records are returned?
Create a dataframe that contains the total number of observations (count) made for all years, and sum of observation weights for each site, ordered by site ID.
Storing data: Create new tables using Pandas
We can also use pandas to create new tables within an SQLite database. Here, we re-do an exercise we did before with CSV files using our SQLite database. We first read in our survey data, then select only those survey results for 2002, and then save it out to its own table so we can work with it on its own later.
PYTHON
import pandas as pd
import sqlite3
con = sqlite3.connect("data/portal_mammals.sqlite")
# Load the data into a DataFrame
surveys_df = pd.read_sql_query("SELECT * from surveys", con)
# Select only data for 2002
surveys2002 = surveys_df[surveys_df.year == 2002]
# Write the new DataFrame to a new SQLite table
surveys2002.to_sql("surveys2002", con, if_exists="replace")
con.close()
Challenge - Saving your work
For each of the challenges in the previous challenge block, modify your code to save the results to their own tables in the portal database.
What are some of the reasons you might want to save the results of your queries back into the database? What are some of the reasons you might avoid doing this.
Key Points
- sqlite3 provides a SQL-like interface to read, query, and write SQL databases from Python.
- sqlite3 can be used with Pandas to read SQL data to the familiar Pandas DataFrame.
- Pandas and sqlite3 can also be used to transfer between the CSV and SQL formats.